Stability of the fourth order Runge-Kutta method for time-dependent partial differential equations

نویسندگان

  • Zheng Sun
  • Chi-Wang Shu
چکیده

In this paper, we analyze the stability of the fourth order Runge-Kutta method for integrating semi-discrete approximations of time-dependent partial differential equations. Our study focuses on linear problems and covers general semi-bounded spatial discretizations. A counter example is given to show that the classical four-stage fourth order Runge-Kutta method can not preserve the one-step strong stability, even though the ordinary differential equation system is energy-decaying. But with an energy argument, we show that the strong stability property holds in two steps under an appropriate time step constraint. Based on this fact, the stability extends to general well-posed linear systems. As an application, we utilize the results to examine the stability of the fourth order Runge-Kutta approximations of several specific method of lines schemes for hyperbolic problems, including the spectral Galerkin method and the discontinuous Galerkin method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system

A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...

متن کامل

Chebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation

In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...

متن کامل

A New Diagonally Implicit Runge-Kutta-Nyström Method for Periodic IVPs

A new diagonally implicit Runge-Kutta-Nyström (RKN) method is developed for the integration of initial-value problems for second-order ordinary differential equations possessing oscillatory solutions. Presented is a method which is three-stage fourth-order with dispersive order six and 'small' principal local truncation error terms and dissipation constant. The analysis of phase-lag, dissipatio...

متن کامل

Strong Stability Preserving Properties of Runge-Kutta Time Discretization Methods for Linear Constant Coefficient Operators

Strong stability preserving (SSP) high order Runge–Kutta time discretizations were developed for use with semi-discrete method of lines approximations of hyperbolic partial differential equations, and have proven useful in many other applications. These high order time discretization methods preserve the strong stability properties of first order explicit Euler time stepping. In this paper we a...

متن کامل

A Wavelet Method for Solving Nonlinear Time-Dependent Partial Differential Equations

A wavelet method is proposed for solving a class of nonlinear timedependent partial differential equations. Following this method, the nonlinear equations are first transformed into a system of ordinary differential equations by using the modified wavelet Galerkin method recently developed by the authors. Then, the classical fourth-order explicit Runge-Kutta method is employed to solve the resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016